|
|
|
Wednesday, 18 january 2023 |
|
|
|
Secventa 2022 |
Proposed by
lucipet |
|
(20 comments) | 1.458 times displayed |
 |
 Calculati de cate ori apare secventa '2022', in numarul
N = 246810...18202224...246248... , numar construit prin alaturarea tuturor numerelor pare 2, 4, 6, ..., 246, 248, ... ? (ultimul numar par fiind 248 in acest exemplu).
Presupunem ca numarul de secunde in care numarul N este parcurs de la prima la ultima sa cifra este egal cu lungimea lui (numarul cifrelor care il compun). Daca pentru depistarea secventelor '2022' , parcurgerea lui N începe la data 01.01.2022 ora 00:00:01, la ce dată va fi depistată a 2022-a apariție a secvenței '2022' ?
Incepeti prin a calcula data apariției primei secvente '2022', apoi a celei de a 10-a, a 50-a, a 100-a, a 200-a, a 500-a, etc
Se intelege faptul ca trebuie adaugat la sfarsitul lui N urmatorul numar par, pana cand, prin parcurgerea lui N de la inceput la sfarsit, va fi depistata aparitia de rang 10, 50, 100 etc, a secventei cerute, '2022'.
Bonus:
Care este ultimul numar par care va fi adaugat la sfarsitul numarului curent N, respectand algoritmul, la care se va ajunge la data 31.12.2022 ? |
|
|
Solutia aritmaetica a condus la un algoritm care transpus in cod a oferit posibilitatea calculului nunui numar suficient de mare pentru numarul N construit potrivit enuntului.
Problema s-a transformat astfel in gasirea celui mai eficient algoritm care sa construiasca numarul N apoi sa-l parcurga secvential pentru depistarea sirului '2022' de un numar de ori cerut.
Este interesant cat timp va rula codul vostru pentru depistarea secventei '2022' de rang 1.000.000 :)
Va voi afisa, daca e necesar, solutiile mele pentru rangurile cerute in enunt.
N.B.
Pentru bonus nu am inca raspunsul. Urmeaza... |
|
|
|
|
 |
Search problems by keywords
|
|
|
|
 |
|
|
|
|