Joi, 13 aug 2009 10:25
[#]
d-attila
The same solution like the previous, just on a different (more detailed) way:
a+b+c)^3 –( a^3 + b^3 + c^3) =
(a+b+c)(a+b+c)(a+b+c) –( a^3 + b^3 + c^3) =
(a^2 + b^2 + c^2 + 2ab + 2ac + 2bc)(a+b+c) –( a^3 + b^3 + c^3) =
a^3 + b^3 + c^3 + 3a^2b + 3ab^2 + 3a^2c + 3ac^2 + 3b^2c + 3bc^2 + 6abc–( a^3 + b^3 + c^3)=
3a^2b + 3ab^2 + 3a^2c + 3ac^2 + 3b^2c + 3bc^2 + 6abc=
3[a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 + 2abc] =
3[a^2b + ab^2 + a^2c + abc + ac^2 + bc^2+ b^2c+abc] =
3[ab(a+b)+ac(a+b)+c^2(a+b)+bc(a+b)]=
3(a+b)(ab+ac+c^2+bc)=
3(a+b)[a(b+c)+c(b+c)]=
3(a+b)(a+c)(b+c)
Sorry for replacing for a,b,c,....