Luni, 5 mar 2012 05:57
[#]
wmutex
Mi-am zis: "ia sa m-apuc sa vad daca intr-adevar exista vreun alt tip de solutie." Asa ca am numerotat cele 8 triunghiuri existente, ca in
figura, si am generat toate configuratiile posibile de patru triunghiuri; in total, C(8,4)=70 de configuratii.
Intre acolade sunt triunghiurile (ma rog, indexul lor), urmate de un "/" si numarul de linii care trebuie sterse pentru a obtine configuratia respectiva de triungiuri. Configuratiile care au numarul de laturi taiate "x" nu sunt posibile (de exemplu, nu pot avea o configuratie cu doar triunghiurile 1, 2, 4, 5 fara a numara si triunghiul nr. 3).
{1,2,3,4}/7 {1,2,3,5}/7 {1,2,3,6}/6 {1,2,3,7}/6
{1,2,3,8}/6 {1,2,4,5}/x {1,2,4,6}/x {1,2,4,7}/x
{1,2,4,8}/x {1,2,5,6}/6 {1,2,5,7}/5 {1,2,5,8}/5
{1,2,6,7}/5 {1,2,6,8}/5 {1,2,7,8}/4 {1,3,4,5}/6
{1,3,4,6}/6 {1,3,4,7}/7 {1,3,4,8}/6 {1,3,5,6}/6
{1,3,5,7}/5 {1,3,5,8}/5 {1,3,6,7}/6 {1,3,6,8}/6
{1,3,7,8}/5 {1,4,5,6}/5 {1,4,5,7}/5 {1,4,5,8}/4
{1,4,6,7}/6 {1,4,6,8}/5 {1,4,7,8}/5 {1,5,6,7}/6
{1,5,6,8}/6 {1,5,7,8}/x {1,6,7,8}/6 {2,3,4,5}/7
{2,3,4,6}/6 {2,3,4,7}/7 {2,3,4,8}/6 {2,3,5,6}/7
{2,3,5,7}/6 {2,3,5,8}/6 {2,3,6,7}/6 {2,3,6,8}/6
{2,3,7,8}/5 {2,4,5,6}/6 {2,4,5,7}/6 {2,4,5,8}/5
{2,4,6,7}/6 {2,4,6,8}/5 {2,4,7,8}/5 {2,5,6,7}/7
{2,5,6,8}/7 {2,5,7,8}/x {2,6,7,8}/6 {3,4,5,6}/6
{3,4,5,7}/6 {3,4,5,8}/5 {3,4,6,7}/7 {3,4,6,8}/6
{3,4,7,8}/6 {3,5,6,7}/6 {3,5,6,8}/6 {3,5,7,8}/x
{3,6,7,8}/6 {4,5,6,7}/7 {4,5,6,8}/6 {4,5,7,8}/x
{4,6,7,8}/7 {5,6,7,8}/7
In concluzie: daca cele 4 triunghiuri au
k laturi puse "la comun" atunci configuratia se realizeaza prin
n=
k+4 linii sterse. Cum in plan nu e posibil ca 4 triunghiuri echilaterale sa aiba 4 laturi in comun, rezulta ca problema este imposibila (sau, cel putin, e imposibila in termenii explicati aici).